If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+6x-1053=0
a = 3; b = 6; c = -1053;
Δ = b2-4ac
Δ = 62-4·3·(-1053)
Δ = 12672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12672}=\sqrt{576*22}=\sqrt{576}*\sqrt{22}=24\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-24\sqrt{22}}{2*3}=\frac{-6-24\sqrt{22}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+24\sqrt{22}}{2*3}=\frac{-6+24\sqrt{22}}{6} $
| 5x-3x-1=2x | | 7/9n+17=12 | | 5(x+3)=x-5 | | -210=5x-125 | | 4(2x+1)+5=2(4x+7) | | 19d=11+18d | | 2/5(4x+)=18 | | 4x+1=(-15) | | 5-4u=20u+5 | | 2)(5x-7)=6 | | X+x-650=125 | | 3(0.2x+1)=2 | | -2/7x=-6/35 | | 3/8x=3/56 | | 2(5x-4)=10x+12* | | 22x=11440 | | -3=-1/2n-3 | | 20+8k+20=20k-20 | | 2+t/3=-5 | | 2(4-m)+4m=(-2+3m) | | 3+25x=150 | | 4p=6+6p | | 12.2=3w+8-0.5w | | 2x+8=312 | | 78=(5y+2) | | -4(-5-x)=1/3(x+16) | | -4x+2/3=5/6 | | P=400x-212x+4500 | | 2(3y-7)+4=3y+12-12y+8 | | 10-4y=90 | | 5k=8+7k | | 152=(w+73) |